

US009060420B2

(12) United States Patent Hogg

(54) METHOD OF MANUFACTURING A DOUBLE SIDED FLEX CIRCUIT FOR A DISK DRIVE WHEREIN A FIRST SIDE LEAD PROVIDES AN ETCHING MASK FOR A SECOND SIDE LEAD

(75) Inventor: **Dennis W. Hogg**, Laguna Hills, CA (US)

(73) Assignee: Western Digitial Technologies, Inc., Irvine, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 770 days.

(21) Appl. No.: 13/118,545

(22) Filed: May 30, 2011

(65) Prior Publication Data

US 2011/0226729 A1 Sep. 22, 2011

Related U.S. Application Data

- (62) Division of application No. 11/933,759, filed on Nov. 1, 2007, now abandoned.
- (51) Int. Cl. H05K 3/06 (2006.01) H05K 3/10 (2006.01) (Continued)
- (52) **U.S. CI.**CPC *H05K 3/0082* (2013.01); *Y10T 29/49155* (2015.01); *Y10T 29/49025* (2015.01); (Continued)
- (58) Field of Classification Search

CPC H05K 3/061; H05K 3/062; H05K 3/108; H05K 3/184; H05K 2203/0597; G11B 5/486; G03F 7/0002; G03F 7/0007; Y10T 29/49025; Y10T 29/49124; Y10T 29/49147; Y10T 29/49155; Y10T 29/49156; Y10T 29/49165

(10) Patent No.: US 9,060,420 B2 (45) Date of Patent: Jun. 16, 2015

(56) References Cited

U.S. PATENT DOCUMENTS

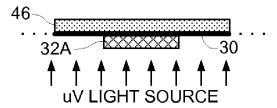
			Kobayashi et al Swirbel	
3,301,543	2.1		tinued)	430/313

FOREIGN PATENT DOCUMENTS

CN	200810169024.4			3/2012		
CN	1178985	A 1		8/2014		
HK	1128357			9/2012		
JP	02281685	A	n)c	11/1990		29/829
	OTHER :	ΡŪ	В	LICATIO	NS	

Office Action dated Nov. 10, 2010 from U.S. Appl. No. 11/933,759, 6 pages.


(Continued)


Primary Examiner — A. Dexter Tugbang

(57) ABSTRACT

A method of manufacturing a flex circuit is disclosed for a disk drive comprising a disk, a head actuated radially over the disk, and control circuitry. The flex circuit is for electrically coupling the head to the control circuitry and comprises a substrate. An electrical coating applied to a first side of the substrate is etched to form a first electrical lead. The first side of the substrate is irradiated with radiation such that the first electrical lead masks the radiation from passing through the substrate to prevent curing of a photoresist applied to the second side of the substrate to form an uncured photoresist and a cured photoresist on the second side of the substrate. The uncured photoresist is removed from the second side of the substrate to form a groove, and the groove is filled with electrically conductive material to form the second electrical lead.

6 Claims, 3 Drawing Sheets

(51) Int. C	1		6,453,1	15 B1	9/2002	Boyle
G11B		(2006.01)	6,470,4			Hospodor
H05K		(2006.01)	6,480,0		11/2002	Jung et al.
			6,480,3			Kim et al.
H05K		(2006.01)	6,480,9			Vallis et al.
H05K	3/18	(2006.01)	6,483,9 6,487,0		11/2002	Cloke et al.
(52) U.S. (Cl.		6,487,0			Balakrishnan
CPC .	Y10T29/	49124 (2015.01); Y10T 29/4914	47 6,490,6		12/2002	
	(2015.01):	Y10T 29/49156 (2015.01); Y10	OT 6,493,1		12/2002	Kim et al.
		2015.01); <i>G11B 5/486</i> (2013.01); 6,493,1		12/2002	
		(2013.01); <i>H05K 3/06</i> (2013.01	6,499,0		12/2002	
		7184 (2013.01); H05K 2201/010	0,319,1			Cloke et al. Dunbar et al.
		5K 2201/09672 (2013.01); H05	0,040,0			Briggs et al.
	(====;,===	<i>2203/0551</i> (2013.0				Frank, Jr. et al.
			6,550,0	21 B1	4/2003	Dalphy et al.
(56)	Refer	ences Cited	6,552,8			Dunbar et al.
()			6,553,4			Wilkins et al.
	U.S. PATEN	T DOCUMENTS	6,578,1 6,580,5		6/2003	Hull et al.
			6,594,1			Lofgren et al.
5,597,49		7 Masaichi et al.	6,600,6			Krounbi et al.
5,694,27 5,737,15		7 Sone et al. 8 Balakrishnan	6,601,1			Castro et al.
5,796,55		8 Akin, Jr. et al.	6,603,6			Christiansen et al.
5,800,72		8 Juskey et al.	6,603,6			Hospodor et al.
5,812,34		8 Balakrishnan	6,604,2 6,606,6		8/2003 8/2003	Dang et al.
5,883,75		9 Schulz	6,606,7		8/2003	
5,986,85		9 Simmons et al.	6,606,7			Yu et al.
5,995,32 6,018,78		9 Balakrishnan 0 Sokolov et al.	6,611,3	93 B1		Nguyen et al.
6,065,09		0 Sokolov et al.	6,615,3			Hamlin et al.
6,078,45		0 Kittilson et al.	6,639,7			Christiansen et al. Luu et al.
6,081,44		0 Lofgren et al.	6,647,4 6,654,1		11/2003	
6,092,14		0 Hicken et al.	6,657,8			Kupferman
6,092,15		O Sokolov et al.	6,661,5			Rothberg
6,094,70 6,105,10		O Sokolov et al. O Guttmann et al.	6,665,7		12/2003	
6,111,71		0 Cloke et al.	6,687,0			Kupferman
6,145,05		0 Howe et al.	6,687,0 6,687,8		2/2004	Rothberg
6,150,07		0 Harvey et al.	6,690,5		2/2004	Nguyen et al.
6,175,89		1 D'Souza et al.	6,690,8			Hanmann et al.
6,178,05 6,191,90		1 Cloke et al. 1 Cloke et al.	6,691,1		2/2004	
6,195,21		1 Guttmann et al.	6,691,2		2/2004	Luu et al.
6,205,49		1 Williams	6,691,2 6,693,7			Rothberg et al. Krounbi et al.
6,208,47	7 B1 3/200	1 Cloke et al.	6,694,4		2/2004	
6,223,30	3 B1 4/200	1 Billings et al.	6,697,9		2/2004	Hospodor et al.
6,230,23 6,246,34		1 Lofgren et al. 1 Cloke et al.	6,704,1		3/2004	Rothberg et al.
6,249,39		1 Billings et al.	6,708,2			Boyle et al.
6,256,69		1 Williams	6,710,9 6,711,6		3/2004 3/2004	
6,262,85		1 Hull et al.	6,711,6		3/2004	
6,263,45	9 B1 7/200	1 Schibilla	6,711,6	60 B1	3/2004	Milne et al.
6,272,69 6,278,56		1 Weaver et al. 1 Cloke et al.	6,715,0		3/2004	Lofgren et al.
6,278,58		Olson et al.	6,724,9		4/2004	Hamlin
6,279,08		1 Schibilla et al.	6,725,3 6,735,6			Ng et al. Rothberg
6,289,48		1 Rothberg et al.	6,735,6			Hamlin
6,292,91		1 Cloke et al.	6,744,7			Eneboe et al.
6,310,74 6,317,85		1 Dunbar et al. 1 Rothberg	6,745,2		6/2004	
6,327,10		1 Rothberg	6,751,4			Elliott et al.
6,337,77		2 Gagne	6,757,4 6,772.2			Nazarian et al. Hamlin
6,369,96		2 Christiansen et al.	6,781,8			Goldstone et al.
6,384,99		2 Schibilla	6,782,4			Codilian et al.
6,388,83		2 Golowka et al. 2 Lee	6,791,7			Singh et al.
6,405,34 6,408,35		2 Hanmann et al.	6,792,4			Hanan et al.
6,408,40		2 Parris	6,799,2			Hamlin
6,411,45	2 B1 6/200	2 Cloke	6,811,4			Garrett et al.
6,411,45		2 Billings et al.	6,826,0 6,826,6		11/2004	Subrahmanyam Hanmann et al.
6,412,08	3 B1 6/200	2 Rothberg et al.	6,832,0		12/2004	
6,415,34 6,425,12		2 Hull et al. 2 Krapf et al.	6,832,9			Garrett et al.
6,441,98		2 Cloke et al.	6,845,4		1/2005	
6,442,32	8 B1 8/200	2 Elliott et al.	6,845,4			Atai-Azimi
6,445,52	4 B1 9/200	2 Nazarian et al.	6,850,4			Lofgren et al.
6,449,76	7 BI 9/200	2 Krapf et al.	6,851,0	55 BI	2/2005	Boyle et al.

(56)	Referer	ices Cited	7,129,763			Bennett et al.
U.:	S. PATENT	DOCUMENTS	7,133,600 7,136,244		11/2006 11/2006	Rothberg
			7,146,094		12/2006	Boyle Coker et al.
6,851,063 B1 6,853,731 B1		Boyle et al. Boyle et al.	7,149,046 7,150,036			Milne et al.
6,854,022 B1	2/2005	Thelin	7,155,616		12/2006	
6,862,660 B1 6,880,043 B1		Wilkins et al. Castro et al.	7,171,108 7,171,110			Masters et al. Wilshire
6,882,486 B1		Kupferman	7,194,576	B1	3/2007	Boyle
6,884,085 B1		Goldstone	7,200,698 7,205,805			Rothberg Bennett
6,888,831 B1 6,892,217 B1		Hospodor et al. Hanmann et al.	7,206,497	B1	4/2007	Boyle et al.
6,892,249 B1		Codilian et al.	7,215,496 7,215,771			Kupferman et al. Hamlin
6,892,313 B1 6,895,455 B1		Codilian et al. Rothberg	7,237,054	B1	6/2007	Cain et al.
6,895,500 B1	5/2005	Rothberg	7,240,161 7,249,365		7/2007	Boyle Price et al.
6,898,730 B1 6,910,099 B1		Hanan Wang et al.	7,243,303		8/2007	
6,928,470 B1	8/2005	Hamlin	7,274,639			Codilian et al.
6,931,439 B1 6,934,104 B1		Hanmann et al. Kupferman	7,274,659 7,275,116			Hospodor Hanmann et al.
6,934,713 B2	8/2005	Schwartz et al.	7,280,302			Masiewicz
6,940,873 B2 6,943,978 B1		Boyle et al.	7,292,774 7,292,775			Masters et al. Boyle et al.
6,948,165 B1		Luu et al.	7,296,284	B1	11/2007	Price et al.
6,950,267 B1		Liu et al.	7,302,501 7,302,579			Cain et al. Cain et al.
6,954,733 B1 6,961,814 B1		Ellis et al. Thelin et al.	7,318,088	B1	1/2008	Mann
6,965,489 B1	11/2005	Lee et al.	7,319,806 7,325,244			Willner et al. Boyle et al.
6,965,563 B1 6,965,966 B1		Hospodor et al. Rothberg et al.	7,323,244			Singh et al.
6,967,799 B1	11/2005	Lee	7,346,790		3/2008	
6,968,422 B1 6,968,450 B1		Codilian et al. Rothberg et al.	7,366,641 7,369,340			Masiewicz et al. Dang et al.
6,973,495 B1	12/2005	Milne et al.	7,369,343	B1	5/2008	Yeo et al.
6,973,570 B1		Hamlin Galdstone	7,372,650 7,380,147		5/2008	Kupferman Sun
6,976,190 B1 6,983,316 B1		Goldstone Milne et al.	7,392,340	B1	6/2008	Dang et al.
6,986,007 B1		Procyk et al.	7,404,013 7,406,545			Masiewicz Rothberg et al.
6,986,154 B1 6,995,933 B1		Price et al. Codilian et al.	7,415,571	B1	8/2008	Hanan
6,996,501 B1	2/2006	Rothberg	7,436,610 7,437,502		10/2008 10/2008	
6,996,669 B1 7,002,926 B1		Dang et al. Eneboe et al.	7,440,214			Ell et al.
7,003,674 B1	2/2006	Hamlin	7,451,344			Rothberg
7,006,316 B1 7,009,820 B1		Sargenti, Jr. et al.	7,471,483 7,471,486			Ferris et al. Coker et al.
7,023,639 B1	4/2006	Kupferman	7,486,060			Bennett
7,024,491 B1 7,024,549 B1		Hanmann et al. Luu et al.	7,496,493 7,518,819			Stevens Yu et al.
7,024,549 B1 7,024,614 B1		Thelin et al.	7,526,184	B1	4/2009	Parkinen et al.
7,027,716 B1		Boyle et al.	7,539,924 7,543,117		5/2009 6/2009	Vasquez et al. Hanan
7,028,174 B1 7,031,902 B1		Atai-Azimi et al. Catiller	7,551,383	B1	6/2009	Kupferman
7,046,465 B1	5/2006	Kupferman	7,562,282 7,577,973			Rothberg Kapner, III et al.
7,046,488 B1 7,050,252 B1			7,596,797	B1	9/2009	Kapner, III et al.
7,054,937 B1	5/2006	Milne et al.	7,599,139 7,619,841			Bombet et al. Kupferman
7,055,000 B1 7,055,167 B1		Severtson Masters	7,647,544			Masiewicz
7,057,836 B1	6/2006	Kupferman	7,649,704			Bombet et al. Kapner, III et al.
7,062,398 B1 7,075,746 B1	6/2006 7/2006	Rothberg Kupferman	7,653,927 7,656,603		2/2010	
7,076,604 B1		Thelin	7,656,763		2/2010	Jin et al.
7,082,494 B1 7,088,538 B1		Thelin et al. Codilian et al.	7,657,149 7,672,072		2/2010 3/2010	Boyle et al.
7,088,536 B1		Singh et al.	7,673,075	B1	3/2010	Masiewicz
7,092,186 B1			7,688,540 7,724,461			Mei et al. McFadyen et al.
7,095,577 B1 7,099,095 B1		Codilian et al. Subrahmanyam et al.	7,725,584	B1	5/2010	Hanmann et al.
7,106,537 B1	9/2006	Bennett	7,730,295		6/2010	
7,106,947 B2 7,110,202 B1		Boyle et al. Vasquez	7,760,458 7,768,776		7/2010 8/2010	Trinh Szeremeta et al.
7,111,116 B1	9/2006	Boyle et al.	7,804,657	B1	9/2010	Hogg et al.
7,114,029 B1		Thelin	7,813,954			Price et al.
7,120,737 B1 7,120,806 B1		Thelin Codilian et al.	7,827,320 7,839,588		11/2010 11/2010	Dang et al.
7,126,776 B1		Warren, Jr. et al.	7,843,660		11/2010	

(56)	Referei	nces Cited		8,380,922			DeForest et al.
U.S	S. PATENT	DOCUMENTS		8,390,948 8,390,952	B1		Szeremeta
				8,392,689		3/2013	
7,852,596 B2		Boyle et al.		8,407,393 8,413,010			Yolar et al. Vasquez et al.
7,859,782 B1	12/2010			8,417,566			Price et al.
7,872,822 B1		Rothberg Wang		8,421,663			Bennett
7,898,756 B1 7,898,762 B1		Guo et al.		8,422,172			Dakroub et al.
7,900,037 B1		Fallone et al.		8,427,771		4/2013	
7,907,364 B2		Boyle et al.		8,429,343	B1	4/2013	
7,929,234 B1	4/2011	Boyle et al.		8,433,937			Wheelock et al.
7,933,087 B1		Tsai et al.		8,433,977 8,458,526			Vasquez et al. Dalphy et al.
7,933,090 B1		Jung et al.		8,462,466		6/2013	
7,934,030 B1 7,940,491 B2		Sargenti, Jr. et al. Szeremeta et al.		8,467,151		6/2013	
7,944,639 B1		Wang		8,489,841			Strecke et al.
7,945,727 B2		Rothberg et al.		8,493,679			Boguslawski et al.
7,949,564 B1		Hughes et al.		8,498,074			Mobley et al.
7,974,029 B2		Tsai et al.		8,499,198 8,512,049			Messenger et al. Huber et al.
7,974,039 B1		Xu et al.		8,514,506			Li et al.
7,982,993 B1 7,984,200 B1		Tsai et al. Bombet et al.		8,531,791			Reid et al.
7,990,648 B1		Wang		8,554,741		10/2013	Malina
7,992,179 B1		Kapner, III et al.		8,560,759			Boyle et al.
8,004,785 B1		Tsai et al.		8,565,053		10/2013	
8,006,027 B1		Stevens et al.		8,576,511 8,578,100			Coker et al. Huynh et al.
8,014,094 B1	9/2011			8,578,242			Burton et al.
8,014,977 B1 8,019,914 B1		Masiewicz et al. Vasquez et al.		8,589,773			Wang et al.
8,040,625 B1		Boyle et al.		8,593,753			Anderson
8,078,943 B1	12/2011			8,595,432			Vinson et al.
8,079,045 B2		Krapf et al.		8,599,510		12/2013	
8,082,433 B1		Fallone et al.		8,601,248 8,611,032			Thorsted Champion et al.
8,085,487 B1 8,089,719 B1		Jung et al. Dakroub		8,612,650			Carrie et al.
8,090,902 B1		Bennett et al.		8,612,706			Madril et al.
8,090,906 B1		Blaha et al.		8,612,798		12/2013	
8,091,112 B1		Elliott et al.		8,619,383			Jung et al.
8,094,396 B1		Zhang et al.		8,621,115		12/2013	Bombet et al.
8,094,401 B1		Peng et al.		8,621,133 8,626,463			Stevens et al.
8,116,020 B1 8,116,025 B1	2/2012	Chan et al.		8,630,052			Jung et al.
8,134,793 B1		Vasquez et al.		8,630,056		1/2014	
8,134,798 B1		Thelin et al.		8,631,188			Heath et al.
8,139,301 B1		Li et al.		8,634,158			Chahwan et al.
8,139,310 B1		Hogg		8,635,412 8,640,007			Wilshire Schulze
8,144,419 B1 8,145,452 B1	3/2012	Liu Masiewicz et al.		8,654,619		2/2014	
8,149,528 B1		Suratman et al.		8,661,193			Cobos et al.
8,154,812 B1		Boyle et al.		8,667,248			Neppalli
8,159,768 B1	4/2012	Miyamura		8,670,205			Malina et al.
8,161,328 B1		Wilshire		8,683,295 8,683,457			Syu et al. Hughes et al.
8,164,849 B1		Szeremeta et al.		8,687,306			Coker et al.
8,174,780 B1 8,190,575 B1		Tsai et al. Ong et al.		8,693,133			Lee et al.
8,194,338 B1		Zhang		8,694,841	B1		Chung et al.
8,194,340 B1	6/2012	Boyle et al.		8,699,159			Malina
8,194,341 B1		Boyle		8,699,171 8,699,172		4/2014	Boyle Gunderson et al.
8,201,066 B1	6/2012	Wang		8,699,172			Olds et al.
8,271,692 B1 8,279,550 B1		Dinh et al.		8,699,185			Teh et al.
8,281,218 B1		Ybarra et al.		8,700,850	B1	4/2014	Lalouette
8,285,923 B2	10/2012	Stevens		8,743,502			Bonke et al.
8,289,656 B1	10/2012			8,749,910 8,751,699			Dang et al.
8,305,705 B1				8,755,141		6/2014	Tsai et al.
8,307,156 B1 8,310,775 B1		Codilian et al. Boguslawski et al.		8,755,143			Wilson et al.
8,315,006 B1		Chahwan et al.		8,756,361			Pruett et al.
8,316,263 B1	11/2012	Gough et al.		8,756,382			Carlson et al.
8,320,067 B1	11/2012	Tsai et al.		8,769,593			Elliott et al.
8,324,974 B1		Bennett		8,773,802			Anderson et al.
8,332,695 B2		Dalphy et al.		8,780,478			Huynh et al.
8,341,337 B1 8,350,628 B1		Ong et al.		8,782,334 8,793,532			Boyle et al. Tsai et al.
8,350,628 B1 8,356,184 B1		Bennett Meyer et al.		8,797,669			Burton
8,370,683 B1		Ryan et al.		8,799,977			Kapner, III et al.
8,375,225 B1		Ybarra	20	04/0247921			Dodsworth et al.
8,375,274 B1		Bonke		07/0133128		6/2007	

(56)	References Cited	OTHER PUBLICATIONS				
U.S. 2009/0113702 A1 2010/0306551 A1 2011/0226729 A1 2012/0159042 A1 2012/0275050 A1 2012/0281963 A1 2012/0324980 A1 2014/0201424 A1	PATENT DOCUMENTS 5/2009 Hogg 12/2010 Meyer et al. 9/2011 Hogg 6/2012 Lott et al. 11/2012 Wilson et al. 11/2012 Krapf et al. 12/2012 Nguyen et al. 7/2014 Chen et al.	Office Action dated Dec. 10, 2010 from U.S. Appl. No. 11/933,759, 7 pages. Office Action dated Apr. 28, 2011 from U.S. Appl. No. 11/933,759, 5 pages. Dennis W. Hogg, Office Action dated: Aug. 8, 2011 for Chinese Patent Application Serial No. 200810169024.4, filed Oct. 14, 2008, 20 pages. * cited by examiner				

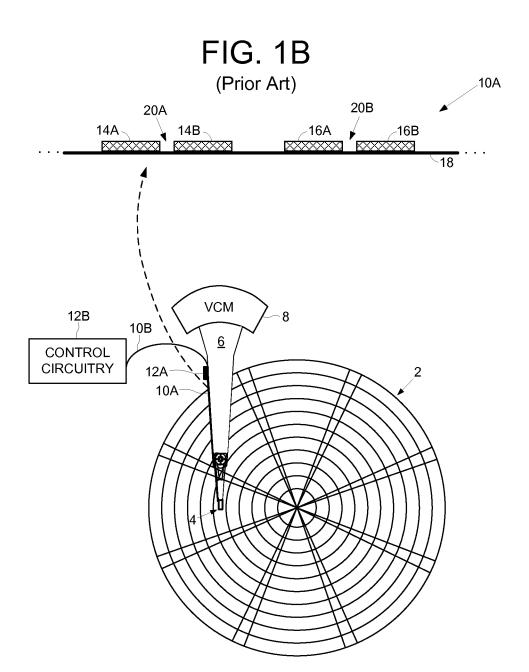


FIG. 1A (Prior Art)

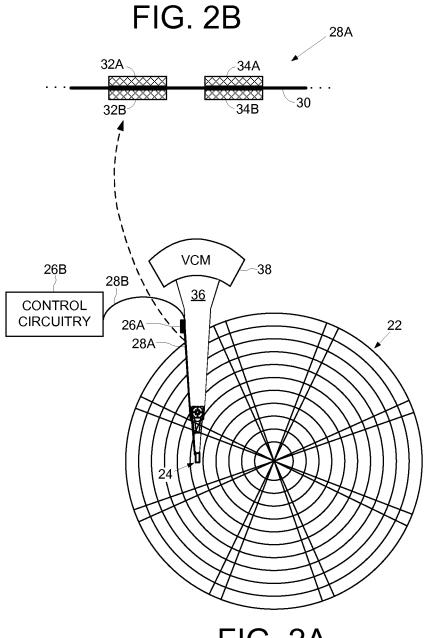
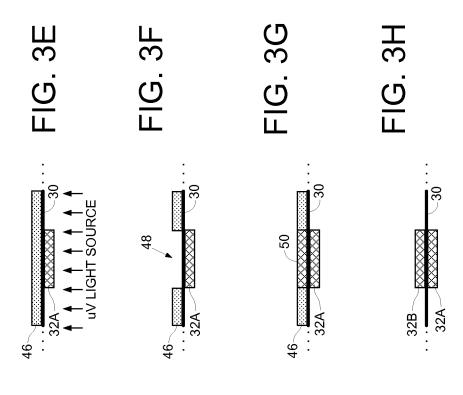
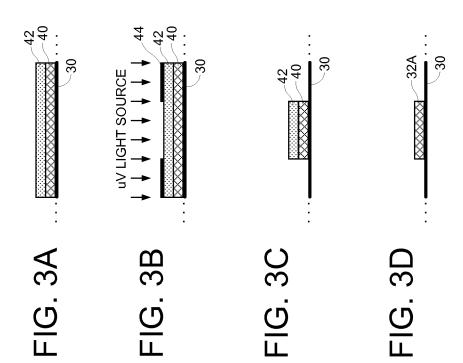




FIG. 2A

1

METHOD OF MANUFACTURING A DOUBLE SIDED FLEX CIRCUIT FOR A DISK DRIVE WHEREIN A FIRST SIDE LEAD PROVIDES AN ETCHING MASK FOR A SECOND SIDE LEAD

This application is a divisional of U.S. patent application Ser. No. 11/933,759 filed on Nov. 1, 2007 the specification of which is incorporated herein by reference.

BACKGROUND

1. Field

The present invention relates to disk drives for computer systems. In particular, the present invention relates to a disk drive comprising a double sided flex circuit wherein a first side lead provides an etching mask for a second side lead.

2. Description of the Related Art

FIG. 1A shows a prior art disk drive comprising a disk 2 $_{20}$ and a head 4 connected to a distal end of an actuator arm 6 which is rotated about a pivot by a voice coil motor (VCM) 8 to position the head 4 radially over the disk 2. The head 4 may comprise an inductive write element (write coil) and a magnetoresistive read element (MR element) fabricated in very 25 small dimensions using semiconductor fabrication techniques. A flex circuit 10 is typically employed to electrically couple the head 4 to control circuitry within the disk drive. In the example shown in FIG. 1A, a first flex circuit 10A couples the head 4 to a preamp 12A mounted on the actuator arm 6, 30 and a second flex circuit 10B couples the preamp 12A to other control circuitry 12B mounted on a printed circuit board, wherein the second flex circuit 10B facilitates the movement of the actuator arm 6. In other disk drives, the preamp 12A may be integrated with control circuitry 12B such that flex circuit 10A couples the head 4 directly to the control circuitry 12B mounted on the printed circuit board.

FIG. 1B shows a magnified cross-sectional view of the flex circuit 10A as comprising electrical leads for carrying differential signals, such as a differential write signal 14A and 14B and a differential read signal 16A and 16B for the head 4. The electrical leads are supported by a substrate 18 which may comprise any suitable material, such as a polyimide. The electrical leads are typically formed using conventional etch- 45 ing techniques on one side of the substrate 18 such that the electrical leads for carrying the differential signal are separated by an air gap (e.g., air gap 20A and 20B).

As the data rate in disk drives increases into the microwave region, the transmission properties of the electrical leads for 50 carrying the differential signals has become more significant. For example, it is desirable to reduce the impedance of the electrical leads in order to increase power efficiency as well as the signal-to-noise ratio (SNR) of the differential signal.

There is, therefore, a need in a disk drive to reduce the 55 impedance of the electrical leads fabricated on a flex circuit in order to improve the power efficiency and SNR in transmitting differential signals along the electrical leads.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows a prior art disk drive comprising a head actuated over a disk and a flex circuit for coupling the head to control circuitry.

leads for carrying differential signals fabricated on a single side of a substrate.

2

FIG. 2A shows a disk drive according to an embodiment of the present invention comprising a head actuated over a disk and a flex circuit for coupling the head to control circuitry.

FIG. 2B shows a flex circuit according to an embodiment of the present invention wherein the electrical leads for carrying differential signals are fabricated on opposite sides of a substrate, wherein a first electrical lead provides an etching mask for etching the second electrical lead.

FIGS. 3A-3H show a method of manufacturing the flex 10 circuit according to an embodiment of the present invention wherein a first electrical lead provides an etching mask for etching the second electrical lead.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

FIG. 2A shows a disk drive according to an embodiment of the present invention including a disk 22, a head 24 actuated radially over the disk 22, control circuitry 26A and 26B, and a flex circuit 28A for electrically coupling the head 24 to the control circuitry 26A (a preamp in the example shown in FIG. 2A). The flex circuit 28A (FIG. 2B) comprises a substrate 30, a first electrical lead 32A coupled to a first side of the substrate 30, wherein the first electrical lead 32A is operable to conduct a first signal of a differential signal, and a second electrical lead 32B coupled to a second side of the substrate 30 opposite the first side, wherein the second electrical lead 32B is operable to conduct a second signal of the differential signal. The first electrical lead 32A provides an etching mask for etching the second electrical lead 32B, and the first electrical lead 32A is substantially aligned with the second electrical lead 32B such that the substrate 30 forms a capacitive dielectric.

In the embodiment of FIG. 2A, the head 24 is connected to 35 a distal end of an actuator arm 36 which is rotated about a pivot by a voice coil motor 38 in order to actuate the head 24 radially over the disk 22. A first flex circuit 28A couples the head 24 to a preamp 26A mounted on the actuator arm 36, and a second flex circuit 28B couples the preamp 26A to other control circuitry 26B mounted on a printed circuit board. As the actuator arm 36 rotates, the second flex circuit 28B bends to facilitate the movement of the actuator arm 36. In an alternative embodiment, the preamp 26A is integrated with the other control circuitry 26B such that flex circuit 28A couples the head 24 directly to the control circuitry 26B mounted on the printed circuit board.

The flex circuit 28A may comprise electrical leads for carrying any suitable differential signal. In one embodiment, the head 24 comprises a magnetoresistive (MR) head comprising a write element having a first differential signal interface (e.g., 32A and 32B) and a read element having a second differential signal interface (e.g., 34A and 34B). As described above, it is desirable to reduce the impedance of the electrical leads carrying a differential signal in order to increase power efficiency as well as the signal-to-noise ratio (SNR) of the signals. The impedance can be reduced by increasing the capacitance between the electrical leads, and in the embodiment shown in FIG. 2B, the impedance is reduced due to the increased capacitance of the substrate 30. However, in order to take full advantage of the capacitive dielectric property of the substrate 30, in one embodiment the first electrical lead (e.g., 32A) is substantially aligned with the second electrical lead (e.g., **32**B).

FIGS. 3A-3H show a method of manufacturing the flex FIG. 1B shows a prior art flex circuit comprising electrical 65 circuit 28A according to an embodiment of the present invention so that the electrical leads carrying a differential signal are substantially aligned. Referring to FIG. 3A, an electrical 3

coating 40 is applied to a first surface of a suitable substrate 30 (e.g., a polymide), wherein the electrical coating 40 may comprise any suitable material, such as a metal alloy comprising copper, beryllium copper, nickel, or compositions thereof. A suitable photoresist 42 (e.g., a suitable polymer) is applied over the electrical coating 40, and a mask 44 is placed over the photoresist 42 (FIG. 3B). A suitable radiation source (e.g., ultraviolet light or visible light) is directed at the first surface so as to cure the photoresist 42 not covered by the mask 44. Referring to FIG. 3C, the uncured photo resist 42 and underlying electrical coating 40 are removed (etched) using a suitable etchant solution, such as acid ferric chloride. The cured photoresist 42 shown in FIG. 3C is then removed (FIG. 3D) using a suitable solution, such as an organic solvent (e.g., methylene chloride), leaving the first electrical lead 32A shown in FIG. 2B.

During the step of etching the electrical coating 40 applied to the first side of the substrate 30 to form the first electrical lead 32A as described above with reference to FIGS. 3A-3D the mask 44 may be inverted if a positive photoresist 42 is employed. In this embodiment, the masked part of the photoresist 42 is cured when developed and the unmasked (and uncured) photoresist 42 is removed together with the underlying electrical coating 40 as shown in FIG. 3C.

Continuing now with FIG. 3E, the substrate 30 is flipped over so that the second side is facing up, and a photoresist 46 is applied to the second side. The first side of the substrate 30 is then irradiated as shown in FIG. 3E such that the first electrical lead 32A masks the radiation from passing through the substrate 30 to prevent curing of the photoresist 46 applied to the second side of the substrate 30, thereby forming an uncured photoresist and a cured photoresist on the second side of the substrate. In this embodiment, the substrate 30 is sufficiently transparent to pass the radiation, whereas the first 35 lead 32A masks the radiation. Referring to FIG. 3F, the uncured photoresist 46 is removed from the second side of the substrate 30 to form a groove 48. Referring to FIG. 3G, the groove 48 is filled with electrically conductive material 50 using any suitable technique, such as a suitable deposition 40 process (e.g., a liquid bath plating process or sputtering process). The cured photoresist 46 shown in FIG. 3G is then

4

removed as shown in FIG. 3H, thereby forming the second electrical lead 32B shown in FIG. 2B.

As seen in FIG. 3H, the first electrical lead 32A is substantially aligned with the second electrical lead 32B such that the substrate 30 forms a capacitive dielectric. In one embodiment, the capacitive dielectric of the substrate 30 increases the capacitance of the electrical leads 32A and 32B as compared to the air dielectric shown in the prior art of FIG. 1B. Increasing the capacitance reduces the impedance of the electrical leads in order to increase power efficiency as well as the signal-to-noise ratio (SNR) of the differential signals.

What is claimed is:

1. A method of manufacturing a flex circuit for a disk drive, the disk drive comprising a disk, a head actuated radially over the disk, and control circuitry, wherein the flex circuit is for electrically coupling the head to the control circuitry and comprises a substrate, the method comprising:

etching an electrical coating applied to a first side of the substrate to form a first electrical lead;

irradiating the first side of the substrate with radiation such that the first electrical lead masks the radiation from passing through the substrate to prevent curing of a photoresist applied to a second side of the substrate, wherein the photoresist is formed into an uncured photoresist and a cured photoresist on the second side of the substrate.

removing the uncured photoresist from the second side of the substrate to form a groove; and

filling the groove with electrically conductive material to form a second electrical lead.

- 2. The method as recited in claim 1, wherein the first electrical lead is substantially aligned with the second electrical lead such that the substrate forms a capacitive dielectric.
- 3. The method as recited in claim 1, wherein the substrate comprises a polyimide.
- **4**. The method as recited in claim **3**, wherein the polyimide is sufficiently transparent to pass the radiation.
- 5. The method as recited in claim 4, wherein the radiation comprises ultraviolet light.
- **6.** The method as recited in claim **4**, wherein the radiation comprises visible light.

* * * *